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Abstract

From the structure of a static granular solid, we derive the fabric and the stiffness tensor in average over those pairs
of interacting particles with contact within the averaging volume. Starting from a linear expansion of the interaction
potential around static equilibrium, stress and elastic strain can be derived from the principles of virtual displacement
and virtual stress-change, respectively. Our approach includes both normal and tangential forces separately, in a new
modular formulation starting from single contacts.

The results are applied to a discrete particle simulation, and the findings include a relation between fabric and
coordination number that is almost unaffected by the presence of friction, a different qualitative behavior of fabric and
stiffness components, and only three independent entries to the stiffness matrix in its eigen-system. More general,
anisotropy evolves directed against the direction of compression, and exponentially fast up to a certain maximal (limit)
magnitude—a constitutive model for this behavior is proposed; in the critical state shear regime, the anisotropy is
considerably smaller.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

One of today’s great challenges in material science and physics is the macroscopic description of the
material behavior of granular materials like sand that are inhomogeneous, nonlinear, disordered, and
anisotropic on a “‘microscopic’ scale. This is due to the contact network of the static structure formed by
the grains, but also due to the inhomogeneous stress distribution in granular assemblies and the corre-
sponding force-networks. There are always large fluctuations of contact forces and a reorganization of the
network due to deformation can lead to a re-structuring of those. For example, when an initially isotropic
contact network is deformed, the result is likely anisotropic in structure. We do not review the existing
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literature in this field here, rather we point the readers attention to the books by Herrmann et al. (1998),
Vermeer et al. (2001), Kishino (2001) and some references by various groups (Chang and Ma, 1991; Babic,
1997; Bagi, 1999; Oda and Iwashita, 2000; Bardet and Vardoulakis, 2001; Suiker et al., 2001; Luding and
Herrmann, 2001; Peters and Horner, 2002; Goldhirsch and Goldenberg, 2002; Kruyt, 2003; Luding et al.,
2003; Madadi et al., 2004; Luding, in preparation) and the references therein.

Recent research already addresses micro-macro transitions and micro-mechanics of granular media as
well as the continuum description of those, including micro-polar theories where the rotational degree of
freedom is important (Bardet and Vardoulakis, 2001; Suiker et al., 2001; Kruyt, 2003). The present work
adds to this a new formulation based on the virtual displacement ansatz for single contacts. The method is
not new, but the modular formulation provides a general formalism that can easily be extended to higher
dimensions and involves also the tangential-forces and contact-moments (not shown here), which is ex-
pected to be helpful in the future. Many of the various approaches in the literature can be formulated as
special cases of the formalism presented below. The numerical method of discrete element simulations alone
is neither new nor original, see e.g. (Oda and Iwashita, 2000; Thornton, 2000; Latzel et al., 2000) and the
references therein, but the combination and quantitative comparison of numerical simulation with theo-
retical predictions is an issue rarely realized in the literature yet.

The new findings involve (i) an interesting qualitative difference in fabric- and stiffness-tensor component
behavior under shear, (ii) an astonishing lack of sensitivity of the relation between fabric and coordination
number to the addition of friction to the simulation model as compared to a non-frictional model (Madadi
et al., 2004), and (iii) the observation that only three entries to the stiffness tensor are independent—for the
system examined in its eigen-system. The latter issue concerns the anisotropy of the packing and the issue of
anisotropic continuum theories, which is also rarely addressed in the framework of granular flows. In this
study, the anisotropic material tensor is computed from a discrete particle simulation of a biaxial box set-
up, and presented in average over many particles inside the system, far away from the walls; a study with
space resolution that would unravel inhomogeneities like shearbands is in progress (Luding, in prepara-
tion).

2. Micro—macro transition for one contact

In this section, the contact force law is reformulated in terms of contact stress, deformation, and stiff-
ness—for single contacts. This leads to basic tensorial quantities associated with single contacts over which
averages can be taken in a variety of ways. The single-contact stresses, e.g., do not constitute a macroscopic
stress yet, but they are at the very basis of the micro-macro transition, and can be directly related to the
“microscopic’ force—displacement laws. Some of the possible averages are discussed, but by far not all of
the possibilities can be considered in one paper. As a final remark, it should be mentioned that this for-
mulation is easily generalized to three dimensions, also for more complicated force-laws.

The vector connecting the centers of mass r; and r, of two particles, with radius q, is the so-called branch
vector I = r; — ry, with the zero-force (contact) distance / = |I| = 2a and the corresponding unit vector
an=1]/1, see also Section 4.2. The overlap in normal direction A =/ — 2an =: €" -1, is the deformation
relative to the configuration when the particles just touch each other. This defines a tensor of rank two,
e"=nn-e), ! which is the normal contribution of the deformation € = €” + €', relative to a virtual, stress-
free reference configuration. With other words, € is the state variable conjugate to the stress—at least
for the linear force model discussed here—such that ¢': €™ = Opcyy = u, with the energy density u,

! The dot corresponds to a inner (scalar) tensor product that leads to a reduction of the rank by two, and no point corresponds to
the outer (dyadic) product which leads to a tensor of rank equal to the sum of ranks of the two neighboring tensors.
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see Eq. (5), the (transposed) stress, see Eq. (7), and the symmetric (objective) €™ = (1/2)(e + €7). ? The
displacement in tangential direction ¢ =: €' -/, (also relative to a stress-free configuration) is irrelevant
for perfectly smooth particles, but has to be taken into account for rough surfaces, it contains (hides)
translational and rotational deformations as well, (Jenkins and Koenders, 2004). This defines €' = #°(#° - €),
the tangential contribution to

A 0.

e:7nn+7tn (1)

with #° ;= 9/|9|. Note that e defines the deformation relative to the stress-free configuration such that
€-1=A+ 9, and thus is not necessarily small, since overlaps and tangential displacements are not re-
stricted a-priori.

In contrast, a virtual, small (infinitesimal) change of the deformation is

Sl =1—1=:¢-1~03A+ 389 = dAn+ 3t, (2)

where the prime denotes the value after the deformation tensor ¢ is applied. Note that (especially in 3D), the
vectors ¢ and #° are not necessarily parallel.

2.1. Change of the branch vector

When the packing of particles is deformed, it is most intuitive that the branch vector changes. This
change, d/, can be split in two components, one parallel to #, the other one perpendicular to it. The
components of the normal change of / are SA := 8I" = a(it - & - I) and, expressed in index notation, * read

SA,( = 512 = I’lxl’l[gﬁ/;yly. (3)
The tangential components are 8¢ := &l — 8I", or
0, = 8]; = l“fﬁﬁﬁyl}, (4)

with the intrinsic definition of the tensor ¢,¢; perpendicular to n,ng. The tensor n,n; is a degenerate, one-
dimensional tensor with eigen-direction parallel to # and trace unity. In two dimensions ¢ defines the
tangential direction modulo the sign. In both two and three dimensions, one can use ¢ := 8I'/|3l'| as def-
inition if |8/'| > 0. In three dimensions, this allows the definition of a third degenerate tensor perpendicular

to both i and 7 via s,s4 := 1,5 — n,ng — t,¢5, with the unit-tensor denoted by the Kronecker-delta 1,;.
2.2. Change of the potential energy density

The potential energy density for one contact,

1 2 2
=, = — (kA* + k' 5
u u 2;;( )7 ( )

also changes due to a deformation, where k and &' are the spring stiffness in normal and tangential
direction, respectively (the prefactor of the quadratic term in a series expansion of the interaction

2 The deformation tensors € and & can be non-symmetric, corresponding to a rotation of the contacting particles; from the non-
symmetric deformation tensor, the non-objective contribution due to a rotation of the continuum has to be disregarded for objectivity
reasons, so that the objective contributions remain (see the contribution by Jenkins and La Ragione in this issue). The mean rotation of
two particles can be formulated as an objective non-symmetric deformation in tangential direction, however, this will not be discussed
further here.

3 Summation over equal indices is implied.
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potential), and the volume ¥, will be specified later, since it can depend on the configuration of the particles
in the neighborhood. Note that it is easy to specify the volume in any way (volume per contact, volume per
contact of this particle, or volume associated to this contact via, e.g., a Voronoi tesselation or dual lattice
construction, as used by Bagi, 1996, Kruyt and Rothenburg, 2001), however, we prefer to leave it
unspecified in order to keep a general formulation and since this volume disappears during averaging, in
many cases.

Due to the displacement of one pair of particles, the change in potential energy density is

1

ch Ry (6)
with the actual force f = kA + k'0, the force after displacement f* = f + 8f, and the mean f* = (f + f)/2.
(The asterisk is dropped in the following for the sake of simplicity implying: f ~ f7). Note the nice

symmetry of the problem with respect to an exchange of the present configuration (unprimed) and the
deformed configuration (primed).

1
du = du" + du' ~ A (kA S + k9, 81;) ~~

2.3. The stress tensor

From the potential energy density, we obtain the transposed stress from the response to a virtual
deformation by differentiation of u with respect to the deformation tensor components

Ou 1
=_—— =— 1,1
dey VI (7

O'/ga

For the result in Eq. (7), in symbolic notation: ¢ = (1/¥;)If, the partial derivative of the changes of the
displacement vector with respect to the deformation tensor was replaced by the branch vector component
and the identity tensors 1,,14; the higher order terms in Eq. (6) were neglected.

Since both 7 and A are parallel to # and ¥ is parallel to £, one can rewrite the stress tensor

kIA Koo,
Oup = 7cnanﬁ + TCI’IOJI;, (8)
and the stress increment tensor
kIdA k189
80,4 ~ Tnxn,; + Tnatﬁ 9)

with A = |A], 8A = [8A|, ¥ = |¥|, and &Y = |3¢|. Note that the dyadic product of the normal vectors n,ng
is symmetric (and degenerate one-dimensional) by definition, whereas nxtg and n,tz are typically non-
symmetric and traceless. The stress relations above are similar to those obtained earlier in the literature for
many particle contacts (Bardet and Vardoulakis, 2001; Latzel et al., 2000; Rothenburg and Selvadurai,
1981; Bathurst and Rothenburg, 1988; Bardet and Proubet, 1991; Bagi, 1996; Liao and Chang, 1997; Kruyt
and Rothenburg, 1998; Kruyt and Rothenburg, 2001; Ball and Blumenfeld, 2002; Kruyt, 2003).

2.4. The stiffness tensor

The partial derivative of the stress tensor with respect to the deformation leads to the stiffness tensor

60'1/; - 1_2
Oy, Nz

Copyy = (knngnyng + K'nytgnyty ), (10)
where the changes of the deformation in normal and tangential direction were used. The additional
derivative which should occur in Eq. (10) leads to terms proportional to A/I, which are neglected in the
following, since the overlap is typically much smaller than the distance between the particle centers.
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Note that the stiffness tensor in Eq. (10) is similar to the results in the literature (see e.g. Liao and Chang,
1997; Kruyt and Rothenburg, 1998), but here the stiffness contribution of a single contact only is given. In
the next section, the relations are provided for particles inside larger averaging volumes.

3. Volume averaging

The purpose of this section is to present averages over the single-contact tensors from the previous
section, for the sake of completeness, so that they can be compared to the previous literature, see e.g.
(Rothenburg and Selvadurai, 1981; Liao and Chang, 1997; Kruyt and Rothenburg, 1998; Litzel et al.,
2000). The focus of the results presented in the next section is the fabric- and the stiffness-tensor, which can
be obtained from static snapshots and do not rely on small (virtual or real) displacements.

Given the tensor-elements based on single contacts, one possibility is to compute the tensor for one
particle in average over all its contacts. An alternative is to perform averages over all contacts within an
averaging volume V¥, which is typically larger than one particle and thus can contain many contacts. As next
refinement, each contact information can be “smeared out” via an averaging shape function, so that a
fraction of it contributes to the averaging volume and the rest does not. Since we did not observe differ-
ences * using either of these methods together with the rather large ¥ used below, the issue of averaging
shape functions will not be discussed further here (Babi¢, 1997; Latzel et al., 2000; Goldenberg and
Goldhirsch, 2002; Goldhirsch and Goldenberg, 2002).

For the sake of simplicity, the simplest averaging approach is used here, i.e. a contact is taken into
account if the corresponding particle center lies within the averaging volume. This corresponds to a pre-
averaging over single particles and then subsequent averaging over the particles in the volume. Cast into an
equation this reads

0=(0) =3 Yo, (1)

peV

where Q is the quantity to be averaged and QP = (1/VP) ZCC:F] V.Q° is the pre-averaged particle quantity
with the contact quantity Q°. Here, the subscript p € V' denotes the particle-in-volume averaging procedure;
the equation for contact-in-volume averaging would appear as Q =+ >~ __, V.0°. The volume fraction v is
obtained from either O = 1, or from Q¢ = V'?/(C?V,), to name two examples. In the following, we restrict
ourselves to the particle-in-volume averaging method.

3.1. The fabric tensor

For one particle, the fabric tensor is defined as the sum, over all contacts, of the dyadic product formed
by the normal vectors:

cp
Fy = Zn“n,; (12)
c=1

with the trace tr F* = F) = CP. For one unit-cell (attributed to the single particle under consideration) with
volume V", the fabric tensor can be defined as

4 For a centered averaging volume of about one third of the total volume, the particle-center in volume and the contact in volume
averaging rules, respectively, slightly under- and overestimate the values obtained with a homogeneous shape function covering one
particle, by less than one percent.
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p

Fb =y 2y (13)

so that tr F* = F! = v'CP is a contact number density with the (local) volume fraction v* = VP /V*" and the
contact number CID of particle p. In a larger, disordered system, with some distribution of particle radii, the
relation between fabric, density and contact number is more complicated (Madadi et al., 2004) and an
average over many particles

Fy=7 ZWZWﬂ (14)

pe V c=1

is the method of choice. Note that the superscript u for unit-cell is redundant, since the equations are
identical to those with arbitrary averaging volume when the sum over the particles reduces to one term. The
prediction for the trace of the fabric in frictionless, isotropic systems is

trF =F, = gvC (15)

with the average coordination number C, and the correction factor
3( a3
&M+£<Lﬁ> (16)

dependent on the first three moments of the size distribution a* (with k = 1,2, 3), see the study by (Madadi
et al., 2004). In brief, g, corrects for the fact that the coordination number of different sized particles is
proportional to their surface area, so that a monodisperse packing has g, = 1, whereas a polydisperse
packing has g, > 1 with magnitude increasing with the width of the size distribution. Thus, a polydisperse
packing has a higher contact number density than a monodisperse system of comparable density. Below, it
will be shown that this correction, as tested for frictionless systems (Madadi et al., 2004), is also relevant for
frictional packings.

3.2. The stress tensor

In the averaging volume ¥/, one obtains the approximate (averaged) macroscopic stress from Egs. (8) and
(11) so that

7 Z Zlcf/w (17)
peV c=

where the particle volumes (and the arbitrary averaging volumes introduced for the single-particle relations)
cancel due to the volume weight in Eq. (11).

3.3. The stiffness tensor

The stiffness tensor for spherical (disk) particles with branch vectors from the center to the contact
[° = a, and identical spring constants k = k¢ and k' = (k')°, is equivalently

Capyp = Za <k2n°n;n°n;) + k' Zn 1y td))’ (18)
pEV

where the two contributions from normal and tangential springs will be examined separately below. Again
this result can already be found in the literature (Liao and Chang, 1997; Kruyt and Rothenburg, 1998) in
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similar form, however, we provide it here again, for the sake of completeness, in our nomenclature. More
details and results on periodic lattices will be presented in a forthcoming paper (Luding, in preparation).

4. Simulation results
4.1. Model system

The discrete element model (DEM) (Herrmann et al., 1998; Vermeer et al., 2001; Cundall and Strack,
1979; Bashir and Goddard, 1991; van Baars, 1996; Oda and Iwashita, 2000; Thornton, 2000; Thornton and
Antony, 2000; Kruyt and Rothenburg, 2001) is briefly introduced in this section, together with the force
laws used in the simulation. The “experiment” chosen is the biaxial box set-up, see Fig. 1, where the left and
bottom walls are fixed, and stress- or strain-controlled deformation is applied. In the first case a wall is
subject to a pre-defined pressure, in the second case, the wall is subject to a pre-defined strain. In a typical
“experiment”, the top wall is strain controlled and slowly shifted downwards, while the right wall moves
stress controlled, dependent on the force F'(¢) exerted on it by the material in the box. The strain-controlled
position of the top wall as function of time ¢ is here

ZO_Zf(lJrcoswt) with SZZ:I—E, (19)

z(t) =z + .
0

where the initial and the final positions z;, and z; can be specified together with the rate of deformation
o = 2nf. Rather large deformations ¢,, ~ 0.10 will be applied below. The cosine function is chosen in order
to allow for a smooth start-up and finish of the motion so that shocks and inertia effects are reduced,
however, the shape of the function is arbitrary as long as it is smooth and the deformation is slow.

The stress-controlled motion of the side-wall is described by

my (1) = F(t) — pz(t) — 7x(0), (20)

where m,, is the mass of the right side wall. Large values of m,, lead to slow adaptation, small values allow
for a rapid adaptation to the actual situation. Three forces are active: (i) the force F(¢) due to the bulk
material, (ii) the force —pz(¢) due to the external pressure, and (iii) a viscous frictional force, which damps
the motion of the wall so that oscillations are reduced.

4.2. Discrete particle model

The elementary units of granular materials are mesoscopic grains which deform under stress. Since the
realistic modeling of the deformations of the particles is much too complicated, we relate the normal

"""""" 1 Z(t)

"0 "T12

Fig. 1. (Left) Schematic drawing of the model system. (Right) Position of the top-wall as function of time for the strain-controlled
situation.
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Fig. 2. (Left) Two particle contact with overlap A.

interaction force to the overlap A of two particles (see Fig. 2). Note that the evaluation of the inter-particle
forces based on the overlap may not be sufficient to account for the inhomogeneous stress distribution
inside the particles. Consequently, our results presented below are of the same quality as the simple
assumptions about the force-overlap relation.

If all forces f; acting on the particle i, either from other particles, from boundaries or from external
forces, are known, the problem is reduced to the integration of Newton’s equations of motion for the
translational and rotational degrees of freedom

2 d2
mi@ri:fi and L@‘Pi:ti (21)

with the mass m; of particle i, its position r; the total force f; = > __f7 acting on it due to contacts with other
particles or with the walls, its moment of inertia 7;, its angular velocity @; = de,/d¢ and the total torque

t=> .0 xf.

4.2.1. Normal contact model

Two particles i and j interact only if they are in contact so that their overlap A := —n - A is positive. The
force on particle i, from particle j can be decomposed into a normal and a tangential part, where the
simplest normal force is a linear spring and a linear dashpot

2= kA + A (22)
with spring constant £ and some damping coefficient y,. The half-period of a vibration around the equi-
librium position can be computed, and one obtains a typical response time ¢ = m/w, with
o = +/(k/m;) —n}, the eigen-frequency of the contact, the reduced mass m; = m;m;/(m; + m;), and the
rescaled damping coefficient n, = y,/(2m;;). The energy dissipation during a collision, as caused by the
dashpot, leads to a restitution coefficient » = —v!, /v, = exp(—#,t;), where the prime denotes the normal
velocity after a collision.

4.2.2. Tangential contact model

The force in tangential direction is implemented in the spirit of Cundall and Strack (1979) who intro-
duced a tangential spring in order to account for static friction. Various authors have used this idea and
numerous variants were implemented, see Brendel and Dippel (1998) for a summary and discussion. Since
we use a special implementation, which can be used for dimensions D = 2 and D = 3 alike, it is necessary to
repeat the model and define the implementation. In the static case, the tangential force is coupled to the
normal force via Coulombs law, i.e. /' < u*f™, where for the sliding case one has the dynamic friction with
f'= pdf™. The dynamic and the static friction coefficients follow, in general, the relation u¢ < p*. However,
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for the following simulations we will apply u = u® = pf. The static case requires an elastic spring, related to
1 in Section 2, in order to allow for a restoring force, i.e. a non-zero remaining tangential force in static
equilibrium due to activated Coulomb friction.

If a contact exists with non-zero normal force, the tangential force is active too, and we project the
tangential spring into the actual tangential plane °

E=¢-n(n-?¢), (23)

where & is the old spring from the last iteration. This action is relevant only for an already existing spring; if
the spring is new, the tangential spring-length is zero anyway, however, its change is well defined. The
tangential velocity is

v =v; —n(n-vy) (24)
with the total relative velocity
Vi =Vi—V,+anx o +anx o, (25)

of the surfaces of the two contacting particles. Next, we calculate the tangential test-force as the sum of the
tangential spring and a tangential viscous force (in analogy to the normal viscous force)

fo=—k&—ym (26)

with the tangential spring stiffness k, and a tangential dissipation parameter y,. As long as |[f}|< /&, with
f& = p*f™, one has static friction and, on the other hand, if [f}| becomes larger than f¢, sliding, dynamic
friction is active with f& = uf™. (In the next step, if |f}| is smaller than f¢, static friction is active again,
giving rise to stick-slip behavior.) In the former, static case, the tangential spring is incremented

f, = §+ Vi SIMD (27)

with the time step dtyp of the DEM simulation. The new value of & is to be used in the next iteration in Eq.
(23), and the tangential force f* = £} as defined in Eq. (26) is used. In the latter, sliding case, the tangential
spring is adjusted to a length which is consistent with Coulombs condition
1
&=~ () (28)
t
with the tangential unit vector, ¢ = £} /|f.|, defined by the direction of the force in Eq. (26), and thus the
magnitude of the Coulomb force is used. Inserting & into Eq. (26) leads to f, ~ fit. Note that £ and v, are
not necessarily parallel in three dimensions. However, the mapping in Eq. (28) works always, rotating the
new spring such that the direction of the frictional force is unchanged and, at the same time, limiting the
spring in length according to Coulombs law. In short notation the tangential force on particle i reads

fi=+min(fc, L))t (29)

where fc follows the selection rules described above.

Note that the tangential force described above is identical to the classical Cundall-Strack spring only in
the limits ¢ = p* = p® and y, = 0. The sequence of computations and the definitions and mappings into the
tangential direction, however, is new to our knowledge in so far that it accounts for different static and
dynamic friction coefficients and can be easily generalized to three dimensions.

> This is necessary, since the frame of reference of the contact may have rotated since the last time-step.
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4.2.3. Background friction

Note that the viscous dissipation takes place in a two-particle contact. In the bulk material, where many
particles are in contact with each other, dissipation is very inefficient due to long-wavelength cooperative
modes of motion (Luding et al., 1994a,b). Therefore, an additional damping with the background is
introduced, so that the total force on particle i is

fi= (Fra+ 1) = novis (30)
with a viscous damping constant y, for a rapid equilibration.

4.2.4. Other forces

Other forces than those mentioned above, like long-range forces, contact couples, rolling- or torsion-
friction are neglected in this study as well as a possible non-spherical shape of the particles. Research in this
direction is in progress, however.

4.3. Parameters and initial configuration

The system examined in the following contains N = 1950 particles with radii a; randomly drawn from a
homogeneous distribution with minimum ap;, = 0.5 x 1073 m and maximum @,y = 1.5 x 107> m. The
masses of the cylindrical particles with height #=2.0 x 107* m are m; = pnha?, with the density
p = 2.0 x 103 kgm~>. The total mass of the particles in the system is thus M ~ 0.0026 kg with the typical
reduced mass of a pair of particles with mean radius, mj; =~ 0.67 x 10~ kg. The wall properties are
m,, = 10~ kg and y,, = 2 kgs~!. If not explicitly mentioned, the material parameters are k£ = 10> Nm™',
70 =7, = 0.02kgs™!, and y, = 107 kgs~!, u = 0.5, and k;/k = 0.2. This leads to a typical contact duration
t.=0.82x 107°s and a restitution coefficient of r»=0.89, with the integration time-step used
dtvip = 0.2 x 107® s. The choice of parameters is rather arbitrary, however, the finding below that the
stiffness tensor scales with the spring constant rectifies this a posteriori. Additional simulations (not shown
here) also confirm this statement. Note that the choice of the stiffness and a possible non-linear force law is
more important for dynamic systems e.g. for sound propagation than for the quasi-static system presented
here.

Initially, the particles are randomly distributed in a huge box, with rather low overall density. Then the
box is compressed by allowing the walls to follow Eq. (20) with isotropic pressure p = p, = p., in order to
achieve an initial condition as isotropic as feasible; there is remaining anisotropy of the order of a few
percent in some situations, however. This configuration is relaxed until the kinetic energy is several orders
of magnitude smaller than the potential contact energy. Starting from the relaxed, isotropic initial con-
figuration, the strain is applied to the top wall and the response of the system is examined, while the side
wall is still pressure controlled. In Fig. 3, snapshots from a typical simulation are shown during com-
pression, displaying two important features. The potential energy (mean stress is equivalent to the potential
energy density) increases together with the anisotropy (more vertical than horizontal stress-chains).

4.4. Averaged quantities

In the following, most simulation results are presented for the side pressure p = 200 only. A more de-
tailed study involving various p = 20, 40, 100, 200, 400, and 500 is in preparation (Luding, in preparation).
There, the behavior of all the averaged scalar and tensor variables during the simulations is examined in
detail for situations with low and high confining pressure. Here we focus on the fabric and the stiffness
tensor.
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€. = 0.065

Fig. 3. Snapshots of the simulation at different ¢... The greyscale corresponds to the potential energy of each particle (summed over all
its contacts), decaying from bright to dark.

The averages are performed such that parts of the system close to the walls are disregarded in order to
avoid boundary effects. This means, that the averaging volume is only 64 percent of the total volume. A
particle contact is taken into account for the average if the corresponding particle-center lies within the
averaging volume V.

4.4.1. Fabric tensor

The fabric tensor is computed according to Eq. (14), and displayed in Fig. 4. The trace of the fabric first
(very rapidly) increases, due to the initial compression, and then decays at ¢, =~ 0.003, due to the dilation;
eventually, it reaches an almost stationary value for ¢, > 0.04. This stationary contact number density is
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Fig. 4. (Left) Fabric tensor, contact number density, deviator fabric, and fabric orientation ¢, plotted against ¢... The contact number
density is corrected by a factor g, ~ 1.09, which accounts for the polydisperse size-distribution (Madadi et al., 2004). (Right) Quality
factor for the trace of the fabric tensor scaled by the analytical prediction g,vC from (Madadi et al., 2004), for different pressures
p =20, 40, 200, and 400.



5832 S. Luding | International Journal of Solids and Structures 41 (2004) 5821-5836

1 T T T T
R
0.8 Cun °
0.6 Cnmz )
: 8,1122 *
=2 1222 :
=~ 0.4 C'ypy 0
O 027
0 | temmmmmmmzriizersssssssiasss sessened
-02+F -
0 0.020.04 0.06 0.08 0.1
8ZZ

Fig. 5. Normal contributions to the material tensor C. The dashed line is the difference between vertical and horizontal stiffness,
Cy_; = C},,, — C}y,,. The isotropically prepared initial configuration is in fact isotropic C,_; ~ 0.

only slightly larger for higher pressure, and there is no strong difference for the deviator and the orientation
as function of p. The former grows to values around 0.56%0.03 until ¢, ~ 0.03, and then decays to
0.40 £0.05. The latter remains close to zero, i.e. the mean fabric is almost always anisotropic during
deformation, but not tilted away from the box geometry. The deviator grows to slightly smaller magnitude
for larger confining pressure (data not shown here).

Note that the prediction for the trace was obtained from frictionless isotropic simulations. Given a
correction of the order of eight to nine percent, the disagreement with our data of order one to two percent
in the strongly anisotropic, frictional case indicates that the prediction by (Madadi et al., 2004) is aston-
ishingly robust. This shows that our definition of the fabric is promising with respect to its scaling behavior
with v and C. Nevertheless, the hidden secret is the functional behavior of C as function of the density and
possibly other system- or material-parameters as well.

4.4.2. Stiffness tensor—normal contributions

The normal contributions of the stiffness tensor are plotted in Fig. 5, in units of k. The elements with an
even number of one/two-indices (open symbols) are non-zero, whereas the entries with an odd number are
always much smaller (solid symbols). The difference of C7,,, and C3,,, indicates the anisotropy that is build
up during the experiment, i.e. the material becomes stronger in vertical than in horizontal direction. Note
that the vertical stiffness rapidly increases and remains at its saturation value from & = 0.005 to 0.03,
whereas the horizontal stiffness decreases much slower and does not saturate. For deformations larger than
&, = 0.03, vertical and horizontal stiffness decrease and increase, respectively, until they reach their large
deformation limit. The variation of the shear stiffness C7,,, is much less pronounced, but qualitatively
follows the vertical stiffness. The small values of C},;, and C},,, (solid symbols) indicate that the eigen-
system is not tilted much from the Cartesian and, expressed in terms of material behavior, means that the
material does neither respond with a shear stress to a linear deformation nor with a linear stress to a shear
deformation—in average. ® As an interesting observation, we remark that the entry CI,, is larger in

% If the deformation would not be parallel to the eigen-direction of the anisotropy—as realized here in the bi-axial box set-up—such
fully anisotropic behavior can be expected before critical state flow, until the contact network has adapted to the deformation.
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Fig. 6. Tangential contributions to the material tensor C.

magnitude than C7,,,. We relate this to the fact that the left and bottom wall of the simulation volume are
fixed which breaks the symmetry of the problem and creates a preferred direction of tilt induced by the
shear deformation and possibly related to (or caused by) the existence of a shearband.

4.4.3. Stiffness tensor—tangential contributions

The tangential contributions C' are plotted in Fig. 6, in units of k', where « = k'/k" is the ratio of
tangential and normal stiffness. Note that « = 0.2 as used for these simulations corresponds to a rather
small overall contribution of the tangential forces to the global stiffness. The results are more complicated
than for the normal contributions due to more different entries: The entries C},,; = C5,,, = aC}},, (open
symbols) are now identical and behave like the entry C},,,. In contrast, the entry C} ,, = —aC?,, (plus
symbol) interestingly has a negative sign. The entries C},,, and C},,, (dots) are again very small, and so are
the new, possibly different entries C},,; and C5,,, (small dots). The remaining two entries behave like the
major entries in the normal tensor, i.e. C},, = aC?,,, and C};,, = aC5,,, (x-symbol and star-symbol).

When the tiny entries of C are examined more closely, one observes that aC},, = C|,,, and aCl,,, =
Cl,,;, while the entries C},;, = —C},,, and C%;,, = —C},,, have the corresponding opposite sign.

4.4.4. Discussion of the anisotropy and its evolution

As could be expected from the experimental setup, the stiffness matrix behaves such that the material
builds up strength against the direction of compression, and becomes weaker in the perpendicular direction.
Both processes happen with different rate and different qualitative behavior—the vertical direction reaches
its maximum rapidly and saturates, whereas the horizontal stiffness decreases slower. The tangential springs
contribute less to the total stiffness than the normal springs, according to their smaller microscopic spring
stiffness. The entry C},,, is interestingly negative, and the behavior of the normal stiffness tensor is reflected
in the tangential stiffness tensor entries, however, in different ones. Finally, we note that the magnitude of
the stiffness tensor entries is typically higher for larger external pressure (data not shown here), due to a
larger contact number density.

Comparing the behavior of fabric and stiffness, one observes that the fabric trace, tr F, remains almost
constant, but the scaled deviator, Fp := devF/tr F, approaches a maximal value close to F5**(v,p)tr F ~
0.6, a function of, at least, density and confining stress. The trace and the deviator, respectively, increase
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and decrease with the confining pressure. The anisotropy of the stiffness tensor, C|_,, behaves similar to
devF. Thus, answering the question what determines the empirical “yield-law”: Fp, <F5**(v, p), will help
to understand the evolution of anisotropy in granular packings based on geometric arguments. In relation
to experimental observations, see Section 5.2.3 in the paper by Calvetti et al. (1997), we propose the fol-
lowing differential equation, which describes the exponential approach of the deviatoric fabric to its limit
value:

OFp

aSD
where fr = Br(p) is a material parameter (f(p = 200) = 82), and the deviatoric deformation ep = &., — &,
is introduced. This equation is solved by

T — exp(—Pren) (32)

max
F D

= Pe(Fp™ — Fp), (31)

1—

in agreement with the simulation data for ep < 0.03, with an error margin of about five percent. When the
maximal anisotropy is reached, the behavior changes possibly due to shear band localization, and F5** is
reduced to its critical state value F5.

Remarkable is here also that both F2*tr F and F5i'tr F are only very weakly dependent on p. Note that
FD ~ (Fmax — Fmin)/(Fmax + Fmin) ~ (C2222 — Cllll)/(CQZQZ + C1111 + 2C1122), so that the above differential
equation describes the fabric and the stiffness-anisotropy evolution as well.

Note that the formulation of a more general constitutive law for arbitrary orientation of the deformation
direction relative to the direction of the fabric eigen-values is far from the scope of this paper.

5. Conclusion

From the presented data, it can be concluded that there are basically only three different entries for the
stiffness tensor, scaling with the microscopic spring stiffness used for the simulation. The normal contacts
contribute the shear modulus and two (different) normal moduli. Besides the symmetry of the normal
stiffness tensor with respect to all indices, another reason for this small number of quantities is the biaxial
geometry that fixes the eigen-system of the tensorial quantities parallel to the walls. The stiffness tensor due
to the tangential springs also scales with the corresponding spring stiffness and has also only three inde-
pendent magnitudes (one entry being negative). This is interesting, because an anisotropic theory with only
three stiffness parameters (plus the orientation of the eigen-system) is much easier to deal with than general
anisotropic elasticity.

The second interesting finding is that friction has only a small effect on the scaling relation between
fabric trace and the coordination number of the packing. However, this requires further investigation since
the initial density was very high, and it cannot be excluded from the present data that a critical state flow
with lower density and smaller coordination number is observed—however, this would contradict the
critical state flow concept where, supposedly, the material has forgotten the initial state.

In the biaxial geometry we observe clear anisotropy of the fabric and the stiffness tensor. The magnitude
of anisotropy is maximal at the point of maximum stiffness that coincides with the end of the dilatant
regime with shear band localization (data not shown here, see Luding and Herrmann, 2001; Luding et al.,
2003). The maximum of the fabric trace, interestingly, is found much earlier, closer to the onset of di-
latancy. When the maximal anisotropy is reached eventually, the material becomes softer, until the mea-
sured quantities saturate in the critical flow regime. The scaled (dimensionless) anisotropy of the fabric and
the stiffness tensor behave similarly, but the entries can behave qualitatively different.

A very simple constitutive relation for the evolution of the anisotropy (scaled deviatoric fabric and
stiffness) with deviatoric deformation is proposed for the case of co-linear deformation and fabric. The limit
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deviator magnitude is approached exponentially fast. The microscopic and structural reasons for the limit
in anisotropy is unclear as well as the detailed relation between stress, strain, and anisotropy. Future re-
search involves a more detailed parameter study and three-dimensional simulations of similar systems.
Since the data were obtained from averaging over the possibly inhomogeneous center of the system,
ongoing research is directed towards a better resolution involving smaller averaging volumes in order to
examine the effect of inhomogeneities on the conclusions above. The interesting finding, which supports the
averaging used, is the fact that the eigen-direction of the averaged tensors remains (almost) parallel to the
walls, whereas a tilt is expected inside the shear-band.
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